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Background: Before the apparent cognitive decline, subjects on the course of

Alzheimer’s disease (AD) can have significantly altered spontaneous brain activity, which

could be potentially used for early diagnosis. As previous studies investigating local

brain activity may suffer from the problem of cortical signal aliasing during volume-based

analysis, we aimed to investigate the cortical functional alterations in the AD continuum

using a surface-based approach.

Methods: Based on biomarker profile “A/T,” we included 11 healthy controls (HC, A–T–),

22 preclinical AD (CU, A+T+), 33 prodromal AD (MCI, A+T+), and 20 AD with dementia

(d-AD, A+T+) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.

The amplitude of low-frequency fluctuation (ALFF) method was used to evaluate the

changes of spontaneous brain activity, which was performed in the classic frequency

band (0.01–0.08Hz), slow-4 (0.027–0.073Hz) band, and slow-5 (0.01–0.027Hz) band.

Results: Under classic frequency band and slow-4 band, analysis of covariance

(ANCOVA) showed that there were significant differences of standardized ALFF

(zALFF) in the left posterior cingulate cortex (PCC) among the four groups. The

post-hoc analyses showed that under the classic frequency band, the AD group

had significantly decreased zALFF compared with the other three groups, and the

cognitively unimpaired (CU) group had decreased zALFF compared with the healthy

control (HC) group. Under the slow-4 band, more group differences were detected

(HC > CU/MCI > d-AD). The accuracy of classifying CU, mild cognitive impairment

(MCI), and AD from HC by left PCC activity under the slow-4 band were 0.774, 0.744,

and 0.920, respectively. Moreover, the zALFF values of the left PCC had significant

correlations with cerebrospinal fluid (CSF) biomarkers and neuropsychological tests.
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Conclusions: Spontaneous brain activity in the left PCC may decrease in preclinical AD

when cognitive functions were relatively normal. The combination of a surfaced-based

approach and specific frequency band analysis may increase sensitivity for the

identification of preclinical AD subjects.

Keywords: Alzheimer’s disease, A/T/N system, resting-state functional magnetic resonance imaging, amplitude

of low frequency fluctuation, spontaneous brain activity, surface-based analysis

INTRODUCTION

Alzheimer’s disease (AD) is a major neurodegenerative disease
in elderly adults that causes memory decline, executive function

impairment, and dementia (Masters et al., 2015). Due to the

irreversible damage of neurons, early detection and intervention
may be particularly significant to reduce the damage of AD.
According to the biological definition in 2018 by National
Institute on Aging and Alzheimer’s Association (NIA-AA),

individuals with both positive biomarker profiles “A/T” (A+T+)
can be diagnosed as biological AD (Jack et al., 2018). Meanwhile,
according to cognitive status, they could be further classified
into three groups: preclinical AD (cognitively unimpaired, CU),
prodromal AD (mild cognitive impairment, MCI), and AD with
dementia (dementia, d-AD) (Jack et al., 2018), representing
different stages of the disease. These criteria provide an important
basis for exploring early brain manifestations of the disease and
developing early imaging markers.

Based on resting-state functional magnetic resonance imaging
(rsfMRI), the amplitude of low-frequency fluctuations (ALFF) is
a relatively reliable and reproducible method to measure local
spontaneous brain activities (Zang et al., 2007; Margulies et al.,
2010; Zuo et al., 2010). It has been widely used to analyze
the functional differences among patients with AD, MCI, and
healthy subjects. Several studies have found gradually disordered
inherent activity in the brain and abnormalities of low-frequency
oscillations in many brain regions mainly located in the posterior
cingulate cortex (PCC), medial prefrontal cortex (MPFC),
temporal regions, and superior frontal regions, suggesting that
ALFF might be a potentially useful tool for detecting AD-related

brain alterations (Han et al., 2011; Wang et al., 2011; Xi et al.,
2012; Liang et al., 2014). Additionally, while brain activities under
classic frequency bands (0.01–0.08Hz or 0.01–0.1Hz) were well-

investigated, the inherent patterns of brain activity are sensitive to

specific frequency bands (Buzsaki and Draguhn, 2004; Yang et al.,
2018). It has been demonstrated that rs-fMRI signals of cortex

and cistern may have different power distribution characteristics
in different frequency ranges (Zou et al., 2008). Therefore, few

studies divided the classic frequency band into several sub-bands

and found that subjects within the AD continuumhad frequency-
dependent brain alterations, suggesting the unique contribution

of AD pathologies (Liu et al., 2020; Yang et al., 2020).
Currently, most neuroimaging studies rely on volume-based

analysis to reveal the effect of disease on regional brain activities,

and spatial smoothing is a necessary step to reduce the influence

of noise and individual differences in brain morphology.

Nevertheless, due to large smoothing kernels (6–10mm) are

FIGURE 1 | The red line represents the outermost gray matter (GM) of the

brain, and the yellow line indicates the boundary between the GM and white

matter (WM) of the brain. Using the full width at half maximum (FWHM) of 6

and 10mm for voxel-based smoothing, it can be seen that the signals from

GM located in different brain regions are more likely to be mixed with the

increase of the smoothing kernel.

usually needed, this step can lead to the aliasing of signals
from the adjacent cortices with distinct functions, resulting
in decreased spatial accuracy and statistical power (Figure 1).
As the cortex is a large surface, it can be unfolded. By
expanding the brain to the surface space, mutual contamination
between neighboring but functionally distinct cortices can
be avoided (Brodoehl et al., 2020). Therefore, this method
has better sensitivity and more accurate spatial positioning
than the traditional volume-based method in locating blood
oxygenation level-dependent (BOLD) signal sources within the
cortex (Andrade et al., 2001; Jo et al., 2007). Previously,
there were few studies based on surface analysis because of
computational difficulties (Oosterhof et al., 2011; Tucholka et al.,
2012). With the enhancement of computer performance and
improvement of the method, surface-based functional analysis
becomes relatively practical.
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The study aimed to explore the differences of surface-based
spontaneous brain activity patterns in different stages of patients
with AD with common biomarkers. Based on the previous
studies (Liang et al., 2014; Yang et al., 2018; Zeng et al., 2019),
we hypothesized that: (1) patients with biologically defined AD
might have abnormal brain activities within regions related to AD
pathologies, such as MPFC and PCC. (2) These changes could
represent different cognitive stages and are related to cognitive
functions. (3) Compared to volume-based analysis, the surface-
based approach could reveal more subtle brain alterations in the
early stages of AD.

MATERIALS AND METHODS

Subjects
We reviewed the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database and selected subjects with
complete information, such as cerebrospinal fluid (CSF)
biomarkers, 3D T1-weighted (T1w) images, rsfMRI images,
and neuropsychological tests at the same time point. Based on
the cutoff value of previous research on CSF biomarkers, the
threshold of amyloid-β 1 to 42 peptide (Aβ1−42) is set at 192
ng/L, and the threshold of tau phosphorylated at the threonine
181 position (p-tau181p) is set at 23 ng/L (Shaw et al., 2009,
2011). After screening, the dataset contained 86 subjects, all
from ADNI2.

According to the cutoff value and different cognitive stages, 11
CU individuals with the biomarker characteristic of “A–T–” were
defined as healthy control (HC), 75 subjects with the biomarker
characteristic of “A+T+” were further divided into three groups:
22 CU, 33 MCI, and 20 d-AD.

CSF Analyses
Cerebrospinal fluid data were downloaded from the ADNI
database. Baseline CSF samples were collected in the morning
after an overnight fast and then processed, Aβ1−42 and p-tau181p
were measured subsequently as previously described (Shaw
et al., 2009, 2011). In short, CSF was collected into collection
tubes or syringes provided to each site, then, transferred into
polypropylene transfer tubes within an hour after collection
followed by frozen on dry ice, and transported overnight
on dry ice to the ADNI Biomarker Core laboratory at the
University of Pennsylvania Medical Center. These samples were
thawed at room temperature (1 h) and gently mixed to prepare
aliquots (0.5ml). The aliquots were stored in bar code-labeled
polypropylene vials at −80◦C. Aβ1−42, t-tau, and p-tau181
were measured using the multiplex xMAP Luminex platform
(Luminex Corp, Austin, TX, USA) with Innogenetics (INNO-
BIA AlzBio3; Ghent, Belgium; for research use-only reagents)
immunoassay kit-based reagents.

Imaging Acquisition
All participants underwent 3.0 T MR scans. Sequences were
acquired as follows: (1) 3D T1w magnetization prepared
rapid gradient echo (MPRAGE) sequence (acquisition plane =

SAGITTAL; flip angle = 9.0 degree; Matrix X = 256.0 pixels;
Matrix Y = 256.0 pixels; Matrix Z = 170.0; pixel spacing X =

1.0mm; pixel spacing Y = 1.0mm; slice thickness = 1.2mm; TE
= 3.1ms; TI = 0.0ms; TR = 6.8ms); (2) rsfMRI echo-planar
imaging sequence (flip angle = 80.0 degree; Matrix X = 64.0
pixels; Matrix Y = 64.0 pixels; pixel spacing X = 3.3mm; pixel
spacing Y = 3.3mm; time points = 140; number of slices = 48;
slice thickness= 3.3mm; TE= 30.0ms; TR= 3,000.0 ms).

Data Processing
Structural and functional MR images were processed using
DPABISurf_V1.3 toolkit (http://rfmri.org/DPABISurf) and
fMRIPrep 20.0.5 (https://fmriprep.org) (Esteban et al., 2019),
which is based on Nipype 1.4.2 (https://github.com/nipy/nipype)
(Gorgolewski et al., 2011).

Anatomical Data Preprocessing

The T1w image was corrected for intensity non-uniformity
(INU) with N4BiasFieldCorrection (Tustison et al., 2010),
distributed with ANTs 2.2.0 (Avants et al., 2008), and
used as T1w-reference throughout the workflow. The T1w-
reference was then skull-stripped with a Nipype implementation
of the antsBrainExtraction.sh workflow (from ANTs), using
OASIS30ANTs as the target template. Brain tissue segmentation
of CSF, white matter (WM), and gray matter (GM) was
performed on the brain-extracted T1w using fast (FSL 5.0.9)
(Zhang et al., 2001). Brain surfaces were reconstructed using
recon-all (FreeSurfer 6.0.1) (Dale et al., 1999), and the brain
mask estimated previously was refined with a custom variation
of the method to reconcile ANTs-derived and FreeSurfer-
derived segmentation of the cortical gray matter of Mindboggle
(Klein et al., 2017). Volume-based spatial normalization to
one standard space (MNI152NLin2009cAsym) was performed
through non-linear registration with antsRegistration (ANTs
2.2.0), using brain-extracted versions of both T1w reference and
the T1w template. The following template was selected for spatial
normalization: ICBM 152 Non-linear Asymmetrical template
version 2009c (Fonov et al., 2009).

Functional Data Preprocessing

For the BOLD data of each subject, the following preprocessing
was performed. The first 10 functional images volumes were
discarded for the stabilization of the gradient magnetic field
and the adaptation of the subjects need to take some
time. A reference volume and its skull-stripped version were
generated using a custom methodology of fMRIPrep. The
BOLD reference was then co-registered to the T1w reference
using bbregister (FreeSurfer) which implements boundary-based
registration (Greve and Fischl, 2009). Head-motion parameters
with respect to the BOLD reference (transformation matrices,
and six corresponding rotation, and translation parameters) are
estimated usingmcflirt before any spatiotemporal filtering occurs
(FSL 5.0.9) (Jenkinson et al., 2002). BOLD runs were slice-
time corrected using 3dTshift from AFNI 20160207 (Cox and
Hyde, 1997), and resampled onto the surface fsaverage5 for
surface-based analysis (FreeSurfer reconstruction nomenclature)
or onto the MNI152NLin2009cAsym space for volume-based
analysis. Gridded (volumetric) resamplings were performed
using antsApplyTransforms (ANTs), configured with Lanczos
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interpolation to minimize the smoothing effects of other
kernels (Lanczos, 1964). Non-gridded (surface) resamplings were
performed using mri_vol2surf (FreeSurfer). Automatic removal
of motion artifacts using independent component analysis
(ICA-AROMA) (Pruim et al., 2015) was performed on the
preprocessed BOLD volumes. Several confounding time-series
were calculated based on the preprocessed BOLD: framewise
displacement (FD), DVARS (D referring to the temporal
derivative of time courses, VARS referring to RMS variance over
voxels), and three region-wise global signals (Power et al., 2012,
2014). Linear trends were then removed. The signals of the
CSF, the WM, and the whole-brain were calculated using the
CompCor (Behzadi et al., 2007) method and regressed out.

For more details of the pipeline, please refer the section
corresponding to workflows in the documentation of fMRIPrep.

ALFF Analyses

The ALFFs analyses was based on the DPABISurf_V1.3 toolkit.
The time series of each vertex on the surface or voxel in the
3d space was transformed into the frequency domain to obtain
the power spectrum. The square root was then calculated at
each frequency of the power spectrum and an average square
root of 0.01–0.08Hz at each vertex on the surface was obtained,
considered as ALFF (Zang et al., 2007; Zou et al., 2008). The ALFF
was then converted to a Z score by subtracting the global mean
value and dividing it by the SD. Finally, we smoothed Z maps
with a 10mm full width at half maximum (FWHM) Gaussian
kernel on the surface, or with a 6mm FWHMGaussian kernel on
3d volumes. Considering that dividing a classic frequency band
into more precise sub-bands may better reflect specific brain
activity changes, we further analyzed the frequency bands Slow-
5 (0.01–0.027Hz) and Slow-4 (0.027–0.073Hz), which had been
found related to GM neural oscillations and could detect changes
in different cognitive stages (Zuo et al., 2010).

Statistical Analysis
For demographic and clinical data, ANOVAwas used to compare
the age, education, neuropsychological tests, and CSF biomarkers
among four groups in SPSS 26.0. A chi-square test was employed
for gender distribution difference assessment. The significance
level was set at P < 0.05.

Analysis of covariance was used to find out brain activity
changes among the four groups using the DPABISurf_V1.3
toolkit. Age, gender, education, and mean FD were taken as
covariates. Permutation test with 5,000 permutations was used
to find significant clusters, and multiple comparisons were
corrected by the family-wise error rate (FWER) method with
threshold-free cluster enhancement (TFCE) (Smith and Nichols,
2009). The statistical threshold was set to P < 0.025, as statistical
analyses were performed in both hemispheres. For volume-based
analysis, P < 0.05 was used as a threshold.

Clusters that showed significant group differences were saved
as regions of interest (ROIs). We extracted standardized ALFF
(zALFF) values from all subjects using these ROIs. Then pair-
wise post-hoc comparisons were made in SPSS 26.0 and we
marked out a group with a significant difference between the two

groups. Bonferroni correction was used to correct the post-hoc
comparisons (P < 0.05/6).

Furthermore, to investigate the classification performance of
regional zALFF values, we made receiver operating characteristic
(ROC) curves and calculated areas under the curve (AUCs). In
summary, we separately measured the accuracy of discriminating
HC from the other three groups (CU vs. HC, MCI vs. HC, and
d-AD vs. HC). The accuracy, sensitivity, and specificity for each
classifier were calculated.

Finally, correlation analyses were used to measure the
relationships among zALFF values and neuropsychological scales
as well as CSF biomarkers. Bonferroni correction was used to
correct the correlation analyses (p < 0.05/9).

RESULTS

Demographic and Clinical Characteristics
The demographic and clinical characteristics of the four groups
are summarized in Table 1. Two CU, one MCI, and six d-AD
were excluded for excessive head movement (head motion more
than 3mm or 3 degrees). In the current study, 11 HC, 20 CU,
32 MCI, and 14 d-AD subjects were finally enrolled. There
was no significant difference in age, education, and mean FD
among the four groups (P > 0.05). Gender, CSF biomarkers, and
neuropsychological tests showed significant differences between
at least two groups (Table 1). In general, the CSF pathological
changes in MCI and d-AD groups were more obvious, and the
neuropsychological scales of the d-AD group were significantly
worse than the other three groups.

ALFF Analyses Under Three Frequency
Bands
For surface-based analysis, ANCOVA analyses adjusting age,
gender, education, and mean FD as covariates suggested that
there were significant differences in spontaneous brain activity
of left PCC among four groups under classic frequency band
and slow-4 band. Figure 2 shows the brain regions where there
are significant differences in brain spontaneous activity among
the four groups under different frequency bands. Moreover, we
added cluster size, MNI coordinates, peak value, and specific
areas of the cerebral cortex [Human Connectome Project Multi-
Modal Parcellation, HCP-MMP (Glasser et al., 2016)] to provide
more detailed information (Table 2).

The post-hoc analyses found that after Bonferroni correction,
the zALFF values of the left PCC in the d-AD group were
significantly decreased compared with the other three groups
under the classic frequency band, and the CU group had
decreased zALFF compared with the HC group (Table 3). In the
slow-4 band, there were significant differences among the other
two groups except for that non-significant difference between the
CU group and MCI group.

As for slow-5 band and volume-based analysis, there was no
significant difference among the four groups.

Classification
The classification performance and ROC curves are depicted
in Figure 3. The AUC values for the classification of CU vs.
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TABLE 1 | Demographics and clinical characteristics of the four groups.

Demographic data HC (n = 11) CU (n = 20) MCI (n = 32) d-AD (n = 14) P-value Post hoc

Age (years) 75.35 ± 8.22 74.62 ± 6.11 71.48 ± 6.20 75.51 ± 4.06 0.098a

Gender (male/female) 0/11 9/11 19/13 9/5 0.002b

Education (years) 16.09 ± 3.42 16.15 ± 2.28 16.72 ± 2.29 15.57 ± 2.87 0.556a

Mean FD (mm) 0.14 ± 0.08 0.12 ± 0.04 0.12 ± 0.05 0.13 ± 0.04 0.805a

Aβ1−42 (CSF, ng/L) 230.73 ± 27.59 150.63 ± 25.54 138.80 ± 22.91 125.69 ± 19.27 <0.001a HC > CU > d-AD, HC > MCI

P-tau181p (CSF, ng/L) 16.76 ± 4.19 44.60 ± 14.81 54.18 ± 25.00 56.54 ± 30.29 <0.001a CU, MCI, d-AD > HC

T-tau (CSF, ng/L) 49.65 ± 16.53 81.18 ± 35.60 114.34 ± 56.07d 136.45 ± 91.86 0.001a MCI, d-AD > HC, CU

MMSE total score 29.45 ± 1.04 28.60 ± 1.96 27.88 ± 1.79 21.36 ± 3.65 <0.001a HC > MCI > d-AD, CU > d-AD

Word immediate recall score 15.91 ± 3.59 13.56 ± 2.68c 9.19 ± 3.47 3.50 ± 2.50 <0.001a HC, CU > MCI > d-AD

Word delayed recall score 14 ± 3.55 12.17 ± 3.00c 7.13 ± 3.39 1.21 ± 1.63 <0.001a HC, CU > MCI > d-AD

TMT-A (s) 32.64 ± 9.22 35.72 ± 8.41c 34.84 ± 16.19 72.71 ± 43.67 <0.001a d-AD > HC, CU, MCI

TMT-B (s) 61.82 ± 19.90 88.50 ± 39.14c 104.03 ± 60.51 198.14 ± 77.46 <0.001a d-AD > MCI > HC, d-AD > CU

BNT score 28.91 ± 1.22 28.89 ± 1.02 27.28 ± 2.94 21.64 ± 7.15 <0.001a HC, CU, MCI > d-AD

Data are presented as mean ± SD. HC, healthy control; CU, cognitively unimpaired; MCI, mild cognitive impairment; AD, Alzheimer’s disease; d-AD, AD with dementia; FD, framewise

displacement; Aβ1−42, amyloid-beta42; CSF, cerebrospinal fluid; p-tau181p, tau phosphorylated at the threonine 181 position; t-tau, total tau; MMSE, Mini-Mental State Examination;

TMT-A, Trail Making Test A; TMT-B, Trail Making Test B; BNT, Boston Naming Test.
aThe p-value was obtained by one-way analysis of variance (ANOVA).
bThe p-value was obtained by a two-tail Fisher’s exact test.
cThere were two missing values in the CU group.
dThere were two missing values in the MCI group.

FIGURE 2 | Brain regions with statistically significant differences in the standard amplitude of low-frequency fluctuations (zALFF) among healthy controls (HC),

preclinical AD (CU), prodromal AD (MCI), and AD with dementia (d-AD). The results were obtained by analysis of covariance (ANCOVA) analysis after taking age,

gender, education, and the mean framewise displacement (FD) as covariance [P < 0.025, permutation test number of 5,000, threshold-free cluster enhancement

(TFCE), and family-wise error rate (FWER) correction]. (A) Under classic frequency band; (B) Under slow-4 band. Warmer color represents a more significant difference

in statistical analysis. PCC, posterior cingulate cortex.

HC, MCI vs. HC, and d-AD vs. HC with classic frequency
band features were 0.727, 0.722, and 0.961, respectively, and
with slow-4 band features were 0.773, 0.733, and 0.955,

respectively. Meanwhile, the accuracy for the classification
of CU vs. HC, MCI vs. HC, and d-AD vs. HC with
classic frequency band features were 0.710, 0.791, and 0.920,
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TABLE 2 | Analysis of covariance (ANCOVA) results with age, gender, education, and the mean FD as covariates across healthy controls (HC), preclinical AD (CU),

prodromal AD (MCI), and AD with dementia (d-AD).

Frequency bands Brain region HCP-MMP Cluster size (mm) MNI coordinates Peak value

X Y Z

0.01–0.08Hz PCC 15 29.9787 27.5957 −72.7584 25.2395 13.045

0.027–0.073Hz (Slow-4) PCC 15 29.9787 27.3765 −72.9999 27.7724 11.4176

Statistically significant differences in standard amplitude of low-frequency fluctuation (zALFF) value were defined as P < 0.025, permutation test number of 5,000, threshold-free cluster

enhancement (TFCE), and family-wise error rate (FWER) corrected after taking age, gender, education, and the mean FD as covariance. HCP-MMP, Human Connectome Project

Multi-Modal Parcellation; MNI, Montreal Institute of Neurology; PCC, posterior cingulate cortex.

TABLE 3 | The standard amplitude of low-frequency fluctuations (zALFF) values extracted from the left posterior cingulate cortex (PCC) in each group under classic

frequency band and Slow-4 band (controlled for age, gender, education, and the mean FD).

HC CU MCI d-AD Post-hoc

Classic frequency band 1.02 ± 0.62 0.48 ± 0.57 0.54 ± 0.53 −0.21 ± 0.38 HC > CU > d-AD, MCI > d-AD

Slow-4 band 1.12 ± 0.74 0.45 ± 0.57 0.51 ± 0.56 −0.20 ± 0.38 HC > CU/MCI > d-AD

HC, healthy control; CU, cognitively unimpaired; MCI, mild cognitive impairment; AD, Alzheimer’s disease; d-AD, AD with dementia.

FIGURE 3 | The classification performance and receiver operating characteristic (ROC) curves of CU vs. HC, MCI vs. HC, and d-AD vs. HC under classic frequency

band and slow-4 band. HC, healthy control; CU, cognitively unimpaired; MCI, mild cognitive impairment; AD, Alzheimer’s disease; d-AD, AD with dementia.

respectively, and with slow-4 band features were 0.774, 0.744, and
0.920, respectively.

Relationships With CSF Biomarkers and
Neuropsychological Tests
We correlated zALFF values of the left PCC with CSF biomarkers
and neuropsychological scales (Table 4). Under both classic
frequency band and slow-4 band, the zALFF values of the left
PCC had significant positive correlations with Aβ1−42, Mini-
mental State Examination (MMSE) total score, word immediate
recall score, word delayed recall score, and Boston Naming test
(BNT) score, and significant negative correlation with p-tau181p,
total tau (t-tau), Trail Making Test A (TMT-A), and Trail Making
Test B (TMT-B).

DISCUSSION

In this study, we used the surface-based approach and ALFF
method to investigate spontaneous brain activity alterations

in biological AD subjects. We found significantly different
zALFF values in the left PCC region among the four groups,
showing a decreasing gradient along with disease severity.
Notably, CU subjects already had altered PCC activities,
suggesting a very early effect of AD pathologies. Moreover,
CSF biomarkers and neuropsychological tests showed significant
correlations with zALFF values. Therefore, zALFF values of
the left PCC may be a potential imaging marker for the early
diagnosis of AD. Since there were no significant findings by
the volume-based method, we suggest that a surface-based
approach may increase the ability to detect such cortical
function alteration.

We found significant differences in spontaneous brain activity
of the left PCC region among the four groups. Further, post-
hoc analyses showed that in the AD group the zALFF values of
the left PCC decreased significantly compared with the other
three groups, which is associated with CSF biomarkers and
neuropsychological assessments, such as memory, language, and
executive functions. PCC is the central part of the default mode
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TABLE 4 | Correlation between zALFF values of the left PCC with cerebrospinal fluid (CSF) biomarkers and neuropsychological scales.

Aβ1–42 P-tau181p T-tau MMSE total

score

Word immediate

recall score

Word delayed

recall score

TMT-A TMT-B BNT score

Classic frequency band r 0.343** −0.236* −0.315* 0.423** 0.354** 0.324** −0.332** −0.296* 0.398**

p 0.002 0.039 0.006 < 0.001 0.002 0.005 0.004 0.010 < 0.001

Slow-4 band r 0.381** −0.247* −0.316* 0.413** 0.356** 0.345** −0.320** −0.325** 0.384**

p 0.001 0.030 0.006 < 0.001 0.002 0.002 0.005 0.004 0.001

Aβ1−42, amyloid-beta42; p-tau181p, tau phosphorylated at the threonine 181 position; t-tau, total tau; MMSE, Mini-Mental State Examination; TMT-A, Trail Making Test A; TMT-B, Trail

Making Test B; BNT, Boston Naming Test.

**Refer to statistical significance after bonferroni correction.

*Refer to statistical significance before bonferroni correction.

network (DMN) associated with episodic memory retrieval.
Moreover, it connects different subsystems of the DMN (Wagner
et al., 2005; Buckner et al., 2008), which is a group of brain regions
that support brain activity during resting state (Raichle et al.,
2001) and plays a role in spontaneous cognition and functional
balance with other brain systems (Raichle, 2015). As previous
studies reported, cortical thinning, functional connectivity (FC)
declining, glucose hypometabolism, and pathology aggregation
in DMN areas have been observed in AD and MCI subjects
or individuals at high risk of AD (Braak and Braak, 1991;
Price and Morris, 1999; Dickerson et al., 2009; Gili et al.,
2011; Brier et al., 2012; Hafkemeijer et al., 2012; Liguori et al.,
2016; Lu et al., 2017). By using amyloid positron emission
tomography (PET), early amyloid deposition in PCC and other
regions in DMN have been detected in AD, MCI, and even
at presymptomatic stages (Buckner et al., 2008; Johnson et al.,
2014; Leech and Sharp, 2014). Meanwhile, most of the tau-
dependent brain networks overlapped with ventral and dorsal
DMN regions (Hoenig et al., 2018). The results corroborated
previous findings of abnormal DMN in AD and its association
with cognitive impairments.

It seems that the function of the left PCC is progressively
impaired during the AD continuum and may serve as a
stable imaging marker for monitoring the development of
AD. Wang et al. (2011) reported that PCC showed the
most significant ALFF difference among the AD, MCI, and
healthy elderly groups. While ALFF values decreased in
both AD and MCI groups, and the difference was only
significant between patients with AD and healthy elderly
(Wang et al., 2011). Similarly, Liang et al. (2014) found PCC
had significant differences in ALFF values, and the trend of
ALFF values was AD < late MCI < early MCI < NC.
Most encouragingly, with a surface-based approach, in this
study, we additionally found that ALFF values of left PCC
were decreased in the CU group when the subjects had
not shown any cognitive deficits. Further, using this index
to classify CU and HC, the accuracy was 0.710. This may
indicate that damage to the PCC began very early, possibly
due to Aβ deposition (Johnson et al., 2014), and PCC ALFF
values may have great potentials for early diagnosis. Notably,
the volume-based analysis showed no significant difference
between the four groups using the same statistical threshold.
As previously proposed, the surface-based method would have
better repeatability and sensibility than the volume-based
approach. Also, it can provide additional guarantees for more

spatially specific clusters (Oosterhof et al., 2011; Tucholka et al.,
2012). Thus, we suggest that a surface-based approach would be
beneficial for the detection of early cortical function alterations
in AD.

It is worth noting that we only found changes in the
left but no right PCC. In previous works of literature,
results of laterality were indeed more common. The
most reliable and sturdy metabolic changes for predicting
conversion from aMCI to AD were hypometabolism in
the left PCC/precuneus (Ma et al., 2018). In brain 18F-
fluorodeoxyglucose (FDG) PET, a considerable number
of patients with AD showed hemispheric asymmetries of
hypometabolism (Murayama et al., 2016). Neuropathological
studies have also shown that the left hemisphere was
more likely to suffer from AD-related neurodegeneration
than the right hemisphere (Janke et al., 2001). Also,
in other fields, researchers have found that in primary
progressive aphasia patients, atrophy, neuron loss, and
disease-specific proteinopathy were more severe in
the language-dominated hemispheres (Mesulam et al.,
2014). Concerning most of the subjects who were
right-handed, it is possible that increased intensity and
frequency of usage of the left hemisphere resulted in faster
AD-related neurodegeneration.

Among the three frequency bands, we found similar results
in the classic frequency band and Slow-4 band but not the Slow-
5 band. The previous studies on these three bands of AD have
shown that the test-retest reliability of Slow-4 was greater and
more widely distributed than that of Slow-5. In amnestic MCI,
ALFF values in the left hippocampus and PCC were significantly
reduced under the slow-4 band (Zhao et al., 2015). Compared
with HC, ALFF values in the right putamen of MCI decreased in
the slow-4 band (Ren et al., 2016). The Slow-4 band may be more
sensitive to changes in AD pathologies. Furthermore, compared
with the classic frequency band, zALFF values in the Slow-4 band
additionally showed a statistical difference between the HC and
MCI groups, suggesting that ALFF analysis within this frequency
band could be more stable.

The current study is subject to limitations. First, the
sample size was relatively small, and all the members of the
control group were women. Although ADNI is the largest
AD database and contains over a thousand samples, subjects
with both rsfMRI scan and CSF biomarkers in the ADNI2
dataset are not common. Nevertheless, we found consistent
changes in the left PCC, suggesting the robustness of the
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current method. Second, the research only focused on cross-
sectional analysis, a longitudinal study is needed to fully
demonstrate the progressive impairment of PCC function. Third,
we only used one approach (ALFF) to find imaging markers.
Future studies combining multi-parametric maps and multi-
voxel pattern analysis methods may produce increased sensitivity
for recognizing preclinical AD (Premi et al., 2016). Finally, we
had not included PET biomarkers due to the scarcity of tau
PET data. As CSF biomarkers could only reflect the pathological
state but not pathological deposition in specific regions (Jack
et al., 2018), further studies are needed for understanding the
relationship between local brain activity changes and regional
pathological accumulation.

In conclusion, we used a surface-based approach combined
with specific frequency band analysis to explore the alterations
of spontaneous brain activity in different stages of biologically
defined patients with AD.We found consistently decreased ALFF
in the left PCC of biological AD, even in preclinical AD when
cognitive functions were relatively normal. It is the potential
to be an early imaging marker for AD diagnosis and disease
progression monitoring. Furthermore, with the continuous
development of automatic and fast analytical methods, easier
clinical access to this marker could be expected.
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